The rearrangement of a series of housane-derived cation radicals was investigated. Surprisingly, 2-aryl-substituted systems rearranged regioselectively and in a process whose selectivity proved to be independent of the electronic character of para substituents. The major reaction pathway is suggested to be the one that allows maximum delocalization, and allows it to be maintained for as long as possible. Bridging is invoked to account for the regio- and stereoselectivity. When a nonbridging trimethylsilylmethyl substituent is appended to C2, the regioselectivity is eroded entirely. B3LYP/6-31G(d) calculations corroborate the notion that bridging plays a role. While bridging ought to stabilize an intermediate by allowing delocalization of the charge/spin, there should be an accompanying entropic penalty. To determine the relative importance of enthalpic and entropic factors in determining the product selectivity, the rearrangement of the p-methoxyphenyl-substituted housane was investigated as a function of temperature. Enthalpic factors dominated over the entire temperature range that was explored. Overall, the results indicate that it is possible to influence the direction of migration in housane-derived cation radical rearrangements even when the regiochemical control unit is not directly appended to the migration terminus. This finding suggests that there may be other substituents that can be placed at C2 that could do the same, perhaps more efficiently.