Broadband frequency dependence of respiratory impedance in rats

J Appl Physiol (1985). 2005 Oct;99(4):1364-71. doi: 10.1152/japplphysiol.00383.2005. Epub 2005 Jun 2.

Abstract

Past studies in humans and other species have revealed the presence of resonances and antiresonances, i.e., minima and maxima in respiratory system impedance (Zrs), at frequencies much higher than those commonly employed in clinical applications of the forced oscillation technique (FOT). To help understand the mechanisms behind the first occurrence of antiresonance in the Zrs spectrum, the frequency response of the rat was studied by using FOT at both low and high frequencies. We measured Zrs in both Wistar and PVG/c rats using the wave tube technique, with a FOT signal ranging from 2 to 900 Hz. We then compared the high-frequency parameters, i.e., the first antiresonant frequency (far,1) and the resistive part of Zrs at that frequency [Rrs(far,1)], with parameters obtained by fitting a modified constant-phase model to low-frequency Zrs spectra. The far,1 was 570 +/- 43 (SD) Hz and 456 +/- 16 Hz in Wistar and PVG/c rats, respectively, and it did not shift with respiratory gases of different densities (air, heliox, and a mixture of SF(6)). The far,1 and Rrs(far,1) were relatively independent of methacholine-induced bronchoconstriction but changed significantly with increasing transrespiratory pressures up to 20 cmH(2)O, in the same way as airway resistance but independently of changes to tissue parameters. These results suggest that, unlike the human situation, the first antiresonance in the rat is not primarily dependent on the acoustic dimensions of the respiratory system and can be explained by interactions between compliances and inertances localized to the airways, but this most likely does not include airway wall compliance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustics*
  • Airway Resistance* / drug effects
  • Animals
  • Bronchoconstrictor Agents / administration & dosage
  • Bronchoconstrictor Agents / pharmacology
  • Compliance
  • Dose-Response Relationship, Drug
  • Gases
  • Methacholine Chloride / administration & dosage
  • Methacholine Chloride / pharmacology
  • Pressure
  • Rats / physiology*
  • Rats, Inbred Strains
  • Rats, Wistar
  • Respiration
  • Respiratory Function Tests*
  • Respiratory Physiological Phenomena

Substances

  • Bronchoconstrictor Agents
  • Gases
  • Methacholine Chloride