Genetic screens for enhancers of brahma reveal functional interactions between the BRM chromatin-remodeling complex and the delta-notch signal transduction pathway in Drosophila

Genetics. 2005 Aug;170(4):1761-74. doi: 10.1534/genetics.105.041327. Epub 2005 Jun 8.

Abstract

The Drosophila trithorax group gene brahma (brm) encodes the ATPase subunit of a 2-MDa chromatin-remodeling complex. brm was identified in a screen for transcriptional activators of homeotic genes and subsequently shown to play a global role in transcription by RNA polymerase II. To gain insight into the targeting, function, and regulation of the BRM complex, we screened for mutations that genetically interact with a dominant-negative allele of brm (brm(K804R)). We first screened for dominant mutations that are lethal in combination with a brm(K804R) transgene under control of the brm promoter. In a distinct but related screen, we identified dominant mutations that modify eye defects resulting from expression of brm(K804R) in the eye-antennal imaginal disc. Mutations in three classes of genes were identified in our screens: genes encoding subunits of the BRM complex (brm, moira, and osa), other proteins directly involved in transcription (zerknullt and RpII140), and signaling molecules (Delta and vein). Expression of brm(K804R) in the adult sense organ precursor lineage causes phenotypes similar to those resulting from impaired Delta-Notch signaling. Our results suggest that signaling pathways may regulate the transcription of target genes by regulating the activity of the BRM complex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Animals
  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism*
  • Chromatin / metabolism*
  • Chromosome Mapping
  • Drosophila / genetics
  • Drosophila / metabolism*
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism*
  • Eye Abnormalities / genetics
  • Eye Abnormalities / ultrastructure
  • Fluorescent Antibody Technique, Indirect
  • Genetic Complementation Test
  • Microscopy, Electron, Scanning
  • Receptors, Notch / genetics
  • Receptors, Notch / metabolism*
  • Signal Transduction*
  • Trans-Activators / genetics
  • Trans-Activators / metabolism*
  • Transgenes
  • X Chromosome

Substances

  • Cell Cycle Proteins
  • Chromatin
  • Drosophila Proteins
  • N protein, Drosophila
  • Receptors, Notch
  • Trans-Activators
  • brm protein, Drosophila