Background: Diabetes mellitus is associated with pancreatic cancer in more than 80% of the cases. Clinical, epidemiological, and experimental data indicate that pancreatic cancer causes diabetes mellitus by releasing soluble mediators which interfere with both beta-cell function and liver and muscle glucose metabolism.
Methods: We analysed, by matrix-assisted laser desorption ionization time of flight (MALDI-TOF), a series of pancreatic cancer cell lines conditioned media, pancreatic cancer patients' peripheral and portal sera, comparing them with controls and chronic pancreatitis patients' sera.
Results: MALDI-TOF analysis of pancreatic cancer cells conditioned media and patients' sera indicated a low molecular weight peptide to be the putative pancreatic cancer-associated diabetogenic factor. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of tumor samples from diabetic and non-diabetic patients revealed the presence of a 1500 Da peptide only in diabetic patients. The amino acid sequence of this peptide corresponded to the N-terminal of an S-100 calcium binding protein, which was therefore suggested to be the pancreatic cancer-associated diabetogenic factor.
Conclusions: We identified a tumor-derived peptide of 14 amino acids sharing a 100% homology with an S-100 calcium binding protein, which is probably the pancreatic cancer-associated diabetogenic factor.