Three heme proteins, myoglobin, hemoglobin, and cytochrome c, have been adsorbed onto chitosan-stabilized gold nanoparticles (Chit-Aus) modified Au electrode via a molecule bridge like cysteine. UV-vis spectra indicated that the proteins on Chit-Aus films retained near-native secondary structures. The fabricated procedures and electrochemical behaviors of proteins on such an interface were characterized with electrochemical impedance spectra and cyclic voltammetric techniques. It was demonstrated that Chit-Aus film could not only offer a friendly environment to immobilize protein molecules but also enhance the electron transfer ability between protein molecules and underlying electrode. The effects of scan rate and pH on the electrochemical behaviors of each heme protein are discussed in detail. The resultant electrode displayed an excellent electrocatalytic response to the reduction of H(2)O(2), long-term stability, and good reproducibility.