Cell electropulsation is routinely used in cell Biology for protein, RNA or DNA transfer. Its clinical applications are under development for targeted drug delivery and gene therapy. Nevertheless, the molecular mechanisms supporting the induction of permeabilizing defects in the membrane assemblies remain poorly understood. This minireview describes the present state of the investigations concerning the different steps in the reversible electropermeabilization process. The different hypotheses, which were proposed to give a molecular description of the membrane events, are critically discussed. Other possibilities are then given. The need for more basic research on the associated loss of cohesion of the membrane appears as a conclusion.