Tagging-via-substrate strategy for probing O-GlcNAc modified proteins

J Proteome Res. 2005 May-Jun;4(3):950-7. doi: 10.1021/pr050033j.

Abstract

Identification of proteins bearing a specific post-translational modification would imply functions of the modification. Proteomic analysis of post-translationally modified proteins is usually challenging due to high complexity and wide dynamic range, as well as unavailability of efficient methods to enrich the proteins of interest. Here, we report a strategy for the detection, isolation, and profiling of O-linked N-acetylglucosamine (O-GlcNAc) modified proteins, which involves three steps: metabolic labeling of cells with an unnatural GlcNAc analogue, peracetylated azido-GlcNAc; chemoselective conjugation of azido-GlcNAc modified proteins via the Staudinger ligation, which is specific between phosphine and azide, using a biotinylated phosphine capture reagent; and detection and affinity purification of the resulting conjugated O-GlcNAc modified proteins. Since the approach relies on a tag (azide) in the substrate, we designated it the tagging-via-substrate (TAS) strategy. A similar strategy was used previously for protein farnesylation, phosphorylation, and sumoylation. Using this approach, we were able to specifically label and subsequently detect azido-GlcNAc modified proteins from the cytosolic lysates of HeLa, 3T3, COS-1, and S2 cell lines, suggesting the azido-substrate could be tolerated by the enzymatic systems among these cells from diverse biological species. We isolated azido-GlcNAc modified proteins from the cytosolic extract of S2 cells and identified 10 previously reported and 41 putative O-GlcNAc modified proteins, by nano-HPLC-MS/MS. Our study demonstrates that the TAS approach is a useful tool for the detection and proteomic analysis of O-GlcNAc modified proteins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetylglucosamine*
  • Animals
  • Azides
  • Cell Line
  • Chromatography, High Pressure Liquid
  • Cytosol / chemistry
  • Glycoproteins / analysis*
  • Humans
  • Ligands
  • Mass Spectrometry
  • Molecular Probe Techniques*
  • Phosphorylation
  • Protein Prenylation
  • Protein Processing, Post-Translational
  • Proteomics / methods*

Substances

  • Azides
  • Glycoproteins
  • Ligands
  • Acetylglucosamine