Sapphyrins are pentapyrrolic, metal-free, expanded porphyrins. In the present study, the activity of sapphyrins as anticancer agents in hematopoietic-derived tumor cells was explored. It was found that a dihydroxylated water-soluble sapphyrin derivative (PCI-2000) is a potent inducer of apoptosis in a wide variety of tumor cell lines including lymphoma (Ramos, DHL-4, and HF-1), leukemia (Jurkat and HL-60), and myeloma (8226/S, 1-310, C2E3, and 1-414). PCI-2000 triggers an apoptotic pathway in these tumor cells as shown by release of cytochrome c from mitochondria; activation of caspases 9, 8, and 3; cleavage of the caspase substrate poly(ADP-ribose) polymerase; and Annexin V binding. Apoptosis can be partially inhibited by overexpression of the antiapoptotic protein Bcl-2 or treatment with benzyloxycarbonyl-valine-alanine-aspartic acid-fluoromethylketone, a cell-permeable caspase inhibitor. Both PCI-2000 and PCI-2010, a tetrahydroxy bis-carbamate derivative of PCI-2000, result in increased levels of phosphorylated p38 mitogen-activated protein kinase. Inhibition of p38 mitogen-activated protein kinase phosphorylation resulted in a synergistic increase of PCI-2000 cytotoxicity. PCI-2010 showed less toxicity in mice than PCI-2000 and was active in slowing the growth of Ramos and HL-60 tumor xenografts in nude mice. These results provide preclinical rationale for the further study of sapphyrins for potential use in the treatment of hematopoietic-derived tumors.