Purpose: Prostate cancer recurs during androgen deprivation therapy despite reduced circulating androgens. We showed that recurrent prostate cancer tissue has testosterone levels similar to androgen-stimulated benign prostate, whereas dihydrotestosterone levels were reduced 82% to 1.45 nmol/L, sufficient for androgen receptor activation. The altered testosterone/dihydrotestosterone ratio in recurrent prostate cancer suggests loss of 5alpha-reducing capability. The aim of this study was to characterize steroid 5alpha-reductase isozymes I (S5alphaRI) and II (S5alphaRII) in prostate tissues.
Experimental design: A tissue microarray was constructed from 22 recurrent prostate cancer specimens and matched pairs of androgen-stimulated benign prostate and androgen-stimulated prostate cancer from 23 radical prostatectomy specimens. Immunoblots were constructed from eight recurrent prostate cancers, eight androgen-stimulated benign prostate, and eight androgen-stimulated prostate cancer specimens. Isozyme expression was examined in microarray sections and immunoblots using S5alphaRI and S5alphaRII polyclonal antibodies. Isozyme activities were measured in 12 recurrent prostate cancer, 12 androgen-stimulated benign prostate, and 12 androgen-stimulated prostate cancer specimens.
Results: Nuclear immunostaining exhibited higher S5alphaRI expression than S5alphaRII in recurrent prostate cancer, androgen-stimulated benign prostate, and androgen-stimulated prostate cancers (P < 0.0001); mean expression was 125, 150, and 115 for S5alphaRI versus 10, 29, and 37 for S5alphaRII, respectively. Cytoplasmic immunostaining was moderate and similar for both isozymes in the three tissue types (P > 0.05). Immunoblots confirmed immunohistochemistry; S5alphaRI was expressed in recurrent prostate cancer specimens and S5alphaRII was not detected. The activity of S5alphaRI (114.4 pmol/mg epithelial protein/minute) was 3.7-fold higher than S5alphaRII (30.7 pmol/mg epithelial protein/minute) in recurrent prostate cancer specimens.
Conclusions: Expression levels and isozyme activity shifts from S5alphaRII toward S5alphaRI in recurrent prostate cancer. Dual inhibition of S5alphaRI and S5alphaRII should reduce dihydrotestosterone biosynthesis and may prevent or delay growth of recurrent prostate cancer.