Study design: A cadaveric study comparing image guidance technology to fluoroscopic guidance as a means of pedicle screw placement in the thoracic spine, using a unique starting point for screw placement.
Objective: To assess accuracy of thoracic pedicle screw placement using image guidance versus fluoroscopic guidance for screw insertion.
Summary of background data: While use of pedicle screws in the thoracic spine has been increasing, its adoption has been slower than for the lumbar spine, reflecting concern regarding possible vascular or spinal cord injury due to screw malplacement. Given these risks, efforts to improve the accuracy of thoracic pedicle screw placement remain appropriate. Stereotactic guidance has been applied in other aspects of spinal surgery to improve the accuracy of instrumentation placement.
Methods: Pedicle screws were placed in the thoracic spines of eight cadavers, using either a stereotactic guidance or a manual, fluoroscopically guided technique. A slightly more superior and lateral starting point from prior descriptions was used. Each cadaver was instrumented with pedicle screws in the upper thoracic (T1-T2), middle thoracic (T4-T7), and lower thoracic (T9-T10) regions. In the upper and middle thoracic regions, screws with a 4.0-mm shank diameter were used while in the lower thoracic region a shank diameter of 4.5 mm was used. Postinstrumentation CT scans, followed by anatomic dissections, were used to evaluate screw exit rates and orientation relative to the pedicle axis. Exit rates for the two techniques and the effect of vertebral level on exit rate were compared using a chi analysis. The effect of pedicle diameter was tested using a Pearson correlation coefficient.
Results: No significant differences in the overall exit rates or orientation were found between the two techniques. There were significant differences in exit rates between the middle (47%), compared with the upper (9%) and lower (16%) thoracic regions, respectively (P < 0.001). A significant correlation between pedicle diameter and exit rate was also found (P < 0.0001).
Conclusion: Our study showed no significant differences in the overall exit rates between the two techniques. Image guidance may increase confidence of surgeons with limited experience in thoracic pedicle screw placement. Successful placement of screws within the pedicle varies with the anatomic diameter of the pedicle itself. Concerns regarding accuracy of screw placement should be greatest in the middle thoracic vertebrae (T4-T7), where pedicle diameters are smallest and proximity of the great vessels is nearest.