Lack of age-related decreases in basal whole leg blood flow in resistance-trained men

J Appl Physiol (1985). 2005 Oct;99(4):1384-90. doi: 10.1152/japplphysiol.00061.2005. Epub 2005 Jun 16.

Abstract

Reductions in basal leg blood flow have been implicated in the pathogenesis of metabolic syndrome and functional impairment in humans. We tested the hypothesis that reductions in basal whole leg blood flow with age are either absent or attenuated in those who perform regular strength training. A total of 104 normotensive men aged 20-34 yr (young) and 35-65 yr (middle aged), who were either sedentary or resistance trained, were studied. Mean and diastolic blood pressures were higher (P < 0.05-0.001) in the middle-aged compared with the young men, but there were no significant differences between the sedentary and resistance-trained groups. In the sedentary group, basal whole leg blood flow (duplex Doppler ultrasound) and vascular conductance were lower ( approximately 30 and approximately 38%, respectively; P < 0.01) in the middle-aged compared with the young men. There were no such age-related differences in the resistance-trained group. In the young men, basal whole leg blood flow and vascular conductance were not different between the two activity groups, but, in the middle-aged men, they were higher ( approximately 35 and approximately 36%, respectively; P < 0.01) in the resistance-trained men than in the sedentary men. When blood flow and vascular conductance were expressed relative to the leg muscle mass, the results were essentially the same. We concluded that the age-related reduction in basal whole leg blood flow is absent in resistance-trained men. These results suggest that resistance training may favorably influence leg perfusion in aging humans, independent of its impact on leg muscle mass.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Aging / physiology*
  • Blood Pressure / physiology
  • Body Composition / physiology
  • Case-Control Studies
  • Diastole
  • Femoral Artery / diagnostic imaging
  • Femoral Artery / physiology
  • Humans
  • Leg / blood supply*
  • Male
  • Middle Aged
  • Physical Education and Training*
  • Regional Blood Flow
  • Ultrasonography
  • Weight Lifting / physiology*