The use of murine cerebrovascular cells, that is, endothelial and smooth muscle cells, has not been widely employed as a cell culture model for the investigation of cellular mechanisms involved in cerebral amyloid angiopathy (CAA). Difficulties in isolation and propagation of murine cerebrovascular cells and insufficient yields for molecular and cell culture studies have deterred investigators from using mice as a source for cerebrovascular cells in culture. To date, most of the literature has described isolation of smooth muscle cells or endothelial cells from human, canine, rat, guinea pig, or other large animals. In recent years, several transgenic mice have been established that show CAA pathology; therefore, it is necessary to re-examine the use of mouse cerebrovascular cells as an important model for cell culture studies. We have optimized the isolation procedure of (1) murine microvessels, (2) smooth muscle cells, and (3) endothelial cells to yield a sufficient population of cells for experimentation purposes. Comparisons with rat and human isolation procedures are also noted. Murine smooth muscle cells isolated using the methodology described herein exhibit the classic "hill and valley" morphology and are immunoreactive for smooth muscle cell-specific alpha-actin, whereas endothelial cells demonstrate a more "cobblestone" appearance and stain for von Willebrand factor or factor VIII-related antigen.