Toll-like receptors (TLR) are crucial players in the innate immune response to microbial invaders. These receptors are expressed on immune cells, such as monocytes, macrophages, dendritic cells, and granulocytes. Importantly, TLR are not only expressed by peripheral blood cells, but their expression has been demonstrated in airway epithelium and skin, important sites of host-pathogen interaction. Host cells expressing TLR are capable of recognizing conserved pathogen-associated molecular patterns, such as lipopolysaccharide and CpG DNA, and their activation triggers signaling pathways that result in the expression of immune response genes and cytokine production. As TLR are instrumental in both launching innate immune responses and influencing adaptive immunity, regulation of TLR expression at sites of disease such as in leprosy, acne, and psoriasis may be important in the pathophysiology of these diseases. Furthermore, since TLR are vital players in infectious and inflammatory diseases, they have been identified as potential therapeutic targets. Indeed, synthetic TLR agonists such as imiquimod have already established utility in treating viral pathogens and skin cancers. In the future, it seems possible there may also be drugs capable of blocking TLR activation and thus TLR-dependent inflammatory responses, providing new treatment options for inflammatory diseases.