The monosaccharide constituents of plant gums were separated by capillary electrophoresis at pH 12.1 and detected with indirect UV absorbance. The plant gums investigated were gum arabic, gum acacia, gum tragacanth, cherry gum and locust bean gum (carob gum). The monosaccharides obtained after hydrolysis with 2M trifluoroacetic acid and lyophilisation of the hydrolysate were arabinose, galactose, mannose, rhamnose, xylose, fucose, and glucose, and the two sugar acids galacturonic and glucuronic acid, in accordance with the literature. They were separated in a background electrolyte consisting of NaOH to adjust the pH, 20 mM 2,6-pyridinedicarboxylic acid as chromophore for detection and 0.5 mM cetyltrimethylammonium bromide as additive to reverse the electroosmotic flow. Based on their electropherograms, the plant gums could be identified by their typical composition (depicted in a decision scheme) as follows: a peak of glucuronic acid, together with that of rhamnose, is indicative for gum arabic. Peaks of galacturonic acid and fucose point to gum tragacanth. Locust bean gum shows a major peak for mannose (with the concomitant galactose peak in ratio 4-1), whereas a glucuronic acid and a mannose peak together with a prominent arabinose peak indicates cherry gum. The method was applied to identify the plant gums in samples like watercolours and in several paint layers like gum tempera or those with egg white or drying oils as additives. Artificial aging experiments of thin layers of gum arabic on paper or glass carried out with UV-A radiation (366 nm) did not result in changes of the saccharide patterns, in contrast to the simultaneously conducted aging of a drying oil layer.