Histone deacetylase (HDAC) inhibitors target key steps of tumor development: They inhibit proliferation, induce differentiation and/or apoptosis, and exhibit potent antimetastatic and antiangiogenic properties in transformed cells in vitro and in vivo. Preliminary studies in animal models have revealed a relatively high tumor selectivity of HDAC inhibitors, strenghtening their promising potential in cancer chemotherapy. Until now, preclinical in vitro research has almost exclusively been performed in cancer cell lines and oncogene-transformed cells. However, as cell proliferation and apoptosis are essential for normal tissue and organ homeostasis, it is important to investigate how HDAC inhibitors influence the regulation of and interplay between proliferation, differentiation, and apoptosis in primary cells as well. This review highlights the discrepancies in molecular events triggered by trichostatin A, the reference compound of hydroxamic acid-containing HDAC inhibitors, in hepatoma cells and primary hepatocytes (which are key targets for drug-induced toxicity). The implications of these differential outcomes in both cell types are discussed with respect to both toxicology and drug development. In view of the future use of HDAC inhibitors as cytostatic drugs, it is highly recommended to include both tumor cells and their healthy counterparts in preclinical developmental studies. Screening the toxicological properties of compounds early in their development process, using a battery of different cell types, will enable researchers to discard those compounds bearing undesirable adverse activity before entering into expensive clinical trials. This will not only reduce the risk for harmful exposure of patients but also save time and money.