Hypoglutamatergic theory of schizophrenia is substantiated by observation that high affinity uncompetitive antagonists of NMDA receptors such as PCP can induce psychotic symptoms in humans. Recently, metabotropic glutamate receptors of the mGluR5 type have also been discussed as possible players in this disease. However, less is known about the potential contribution of mGluR1 in schizophrenia. Therefore, the aim of the present study was to compare the effect of selective mGluR1 antagonist EMQMCM, (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate) and mGluR5 antagonist (MTEP ([(2-methyl-1, 3-thiazol-4-yl) ethynyl] pyridine) either alone or in combination with (+)MK-801 in a prepulse inhibition (PPI) model and locomotor activity tests. Additionally, the effect of both mGluR1 and mGluR5 antagonists on (+)MK-801-evoked ataxia was tested. In contrast to (+)MK-801, which induced disruption of PPI, neither MTEP (1.25-5 mg/kg) nor EMQMCM (0.5-4 mg/kg) altered the PPI. However, MTEP, but not EMQMCM, enhanced disruption of PPI induced by (+)MK-801. Although neither mGluR1 nor mGluR5 antagonists given alone changed locomotor activity of rats, MTEP at 5 mg/kg potentiated the effect of (+)MK-801 while EMQMCM (up to 4 mg/kg) turned out to be ineffective. On the other hand, EMQMCM, but not MTEP, enhanced ataxia evoked by MK-801. The present results demonstrate that blockade of mGluR1 and mGluR5 evokes different effects on behavior induced by NMDA receptor antagonists.