The centromere is a specialized region of eukaryotic chromosomes, the site of kinetochore formation, spindle attachment and regulation of chromosome segregation during mitotic and meiotic cell divisions. To identify sequences which increase mitotic stability and/or act as potential centromeres in Leishmania major, we first generated libraries of Leishmania linear artificial chromosomes (LACs) bearing 30 kb inserts of randomly selected genomic DNAs. These were introduced into parasites, and then their stability was assessed following a period of 10 passages of growth in the absence of selective pressure. Approximately 80% of the 108 transfectants tested lost their LACs promptly and only 20% of the recombinants were retained; of these six showed strong but partial stability (maintained in 30-46% of cells). Mapping and sequencing of one clone (cSC10), which confers the highest degree of maintenance, revealed the presence of a sequence that was found within another stable episome, and which is dispersed in the genome of L. major. The implications of these data to the possible mechanisms of chromosomal maintenance are discussed.