Use of proteomics to define targets of T-cell immunity

Expert Rev Proteomics. 2005 Jun;2(3):367-80. doi: 10.1586/14789450.2.3.367.

Abstract

The mammalian immune system has evolved to display peptides derived from microbial antigens to immune effector cells. Liberated from the intact antigens through distinct proteolytic mechanisms, these peptides are subsequently transported to the cell surface while bound to chaperone-like receptors known as major histocompatibility complex molecules. These complexes are then scrutinized by T-cells that express receptors with specificity for specific major histocompatibility complex-peptide complexes. In normal uninfected cells, this process of antigen processing and presentation occurs continuously, with the resultant array of self-antigen-derived peptides displayed on the surface of these cells. Changes in this cellular peptide array alert the immune system to changes in the intracellular environment that may be associated with infection, oncogenesis or other abnormal cellular processes, resulting in a cascade of events that result in the elimination of the abnormal cell. Since peptides play such an essential role in informing the immune system of infection with viral or microbial pathogens and the transformation of cells in malignancy, the tools of proteomics, in particular mass spectrometry, are ideally suited to study these immune responses at a molecular level. Recent advances in studies of immune responses that have utilized mass spectrometry and associated technologies are reviewed. The authors gaze into the future and look at current challenges and where proteomics will impact in immunology over the next 5 years.

Publication types

  • Review

MeSH terms

  • Animals
  • Immunity, Cellular*
  • Major Histocompatibility Complex
  • Mammals
  • Polymorphism, Genetic
  • Proteomics / methods*
  • T-Lymphocytes / immunology*