Conventional electrocardiogram criteria for myocardial infarction (MI) rely on QRS features, but ST-T segment is also affected. We recorded body surface potential mapping in 24 patients with prior MI and in 24 controls. T-wave maximum amplitude and QRS and ST-T integrals were automatically determined. Old MI was verified by magnetic resonance imaging. ST-T integral and T-wave maximum amplitude outperformed QRS integral in detecting MI, with area under receiver operating characteristic curve of 94%, 95%, and 83%, respectively. ST-T integral performed better in non-Q-wave than Q-wave MI, with area under receiver operating characteristic curve of 97% and 92%, respectively. QRS integral correlated negatively with ST-T integral in patients with MI (r = -0.58, P < .001) and positively in controls (r = 0.45, P < .001). In conclusion, ST-T integral proved equal to QRS integral in old MI detection. Inclusion of ventricular repolarization phase and development of electrocardiographic analysis over larger chest area may improve the QRS-based diagnosis of old myocardial infarction.