Combining molecular weight distribution (MWD) data for linear chains of debranched starch from capillary electrophoresis and from size exclusion chromatography (SEC) with detection by differential refractive index and by multi-angle laser light scattering has enabled Mark-Houwink parameters to be determined for linear starch chains. For accurate results, it was found to be important to take SEC band broadening into account, and a methodology for implementing this is presented. This deconvolution technique can be used to reveal features such as maxima or shoulders in the MWD which have qualitative as well as quantitative significance. Remarkably, these data show that the empirical Mark-Houwink relation between molecular weight and hydrodynamic volume is, for linear debranched starch, valid for much lower molecular weights than synthetic polymers. This implies that these Mark-Houwink parameters can be used with "universal calibration" to enable SEC to be used with relative ease to provide MWDs for debranched starch for essentially any degree of polymerization.