In untreated patients with uncomplicated essential hypertension, exercise induces an abnormal increase in blood pressure; the influences of this increase on exercise were evaluated by a cardiopulmonary exercise test (CPX) performed in control conditions (step 1) and during acute blood pressure reduction (step 2). Patients were classified as (1) normotensive (resting diastolic blood pressure [BPd] less than 90 mm Hg; n = 14), (2) mildly hypertensive (BPd of 90 to 104 mm Hg; n = 9), and (3) moderately to severely hypertensive (BPd greater than or equal to 105 mm Hg; n = 16). For the three groups, peak mean blood pressure during exercise was 125 +/- 5 mm Hg (mean +/- SEM), 144 +/- 3 mm Hg (p less than 0.01 vs normotensive), and 161 +/- 4 mm Hg (p less than 0.01 vs normotensive and p less than 0.01 vs mild hypertension), respectively. Oxygen consumption (VO2) at peak exercise and at ventilatory anaerobic threshold was 26.1 +/- 1.1 and 17.2 +/- 0.5 ml/min/kg, 25.4 +/- 1.1 and 16.9 +/- 0.8 ml/min/kg, and 26.4 +/- 1.3 and 17.5 +/- 1.2 ml/min/kg in normotensive subjects, those with mild hypertension, and those with moderate to severe hypertension, respectively. Fourteen normotensive subjects, six with mild hypertension, and nine with moderate to severe hypertension participated to step 2 (nifedipine vs placebo, double-blind crossover). Nifedipine reduced blood pressure at rest and at peak exercise in those with hypertension. Peak exercise VO2 was unaffected by nifedipine in both normotensive subjects and those with hypertension. With nifedipine, ventilatory anaerobic threshold occurred earlier and at a lower VO2 in mild and in moderate to severe hypertension (delta VO2 = -1.9 and -2.4 ml/min/kg, respectively). These findings might be due to nifedipine-induced redistribution of blood flow during exercise and might be the reason for the complaint of weakness after blood pressure reduction in hypertensive subjects.