Judgment, decision making, and situational awareness are higher-order mental abilities critically important to operational cognitive performance. Higher-order mental abilities rely on intact functioning of multiple brain regions, including the prefrontal, thalamus, and parietal areas. Real-time monitoring of individuals for cognitive performance capacity via an approach based on sampling multiple neurophysiologic signals and integrating those signals with performance prediction models potentially provides a method of supporting warfighters' and commanders' decision making and other operationally relevant mental processes and is consistent with the goals of augmented cognition. Cognitive neurophysiological assessments that directly measure brain function and subsequent cognition include positron emission tomography, functional magnetic resonance imaging, mass spectroscopy, near-infrared spectroscopy, magnetoencephalography, and electroencephalography (EEG); however, most direct measures are not practical to use in operational environments. More practical, albeit indirect measures that are generated by, but removed from the actual neural sources, are movement activity, oculometrics, heart rate, and voice stress signals. The goal of the papers in this section is to describe advances in selected direct and indirect cognitive neurophysiologic monitoring techniques as applied for the ultimate purpose of preventing operational performance failures. These papers present data acquired in a wide variety of environments, including laboratory, simulator, and clinical arenas. The papers discuss cognitive neurophysiologic measures such as digital signal processing wrist-mounted actigraphy; oculometrics including blinks, saccadic eye movements, pupillary movements, the pupil light reflex; and high-frequency EEG. These neurophysiological indices are related to cognitive performance as measured through standard test batteries and simulators with conditions including sleep loss, time on task, and aviation flight-induced fatigue.