Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA) and is, therefore, a potential terminator of DG signaling. DG and PA are important intracellular second messengers. DG directly binds protein kinase C (PKC) then activates this multifunctional enzyme. Ca2+-dependent and brain-specific DGKs, alpha, beta, and gamma, are suggested to play pivotal roles in the central nervous system. To elucidate the DGK function in neuronal development, we studied the developmental changes of DGKalpha, beta, and gamma in the postnatal rat brain. By immunoblot analysis, DGKalpha and gamma subtypes were present at birth and then gradually increased, while DGKbeta was not present at birth or postnatal day 3, then increased rapidly from day 14 to reach maximum at day 28. Immunohistochemically, DGKbeta and gamma were distributed in different brain regions. In most brain regions, DGKgamma showed sustained expression throughout the postnatal developmental periods. Interestingly, a temporal expression of DGKgamma was observed in the medial geniculate nucleus during day 3 to 14, and a delay of DGKgamma expression was seen in Purkinje cells, which was coincident with dendritic growth of Purkinje cells. In the hippocampal pyramidal cell, both DGKbeta and gamma were abundant but subcellular localization was different. DGKgamma localized in the cytosol while DGKbeta localized along the membrane structure. These findings suggest that each DGK subtype has a spatio-temporally different function in the developmental neurons.