Two experiments examined the integration of visual and proprioceptive information concerning the location of an unseen hand, using a mirror positioned along the midsagittal plane. In experiment 1, participants tapped the fingers of both hands in synchrony, while viewing the mirror-reflection of their left hand. After 6 s, participants made reaching movements to a target with their unseen right hand behind the mirror. Reaches were accurate when visually and proprioceptively specified hand positions were congruent prior to the reach, but significantly biased by vision when the visual location conflicted with the real location. This effect was independent of the target location and depended strongly upon the relative position of the mirror-reflected hand. In experiment 2, participants made reaching movements following 4, 8, or 12 s active visuomotor or passive visual exposure to the mirror, or following passive exposure without the mirror. Reaching was biased more by the visual location following active visuomotor compared to passive visual exposure, and this bias increased with the duration of visual exposure. These results suggest that the felt position of the hand depends upon an integrated, weighted sum of visual and proprioceptive information. Visual information is weighted more strongly under active visuomotor than passive visual exposure, and with increasing exposure duration to the mirror reflected hand.