The aim of this study was to improve diagnostic efficiency in the detection of gastro-intestinal cancers by using fuzzy logic modeling in combination with a tumor marker panel (CEA, CA72-4, CA19-9) including Tumor M2-PK. In this prospective study histologically confirmed colorectal (n=247), esophageal (n=86) and gastric cancer (n=122) patients were investigated and compared to control (n=53) persons without any malignant diseases. Tumor M2-PK was measured in plasma with an ELISA (ScheBoBiotech, Germany); all other markers were measured in sera (Roche, Germany). At 95% specificity, tumor detection was possible by the best single marker in colorectal cancer patients in 48% (Tumor M2-PK), in gastric cancers in 61% (CA72-4) and in esophageal cancers in 56% (Tumor M2-PK). A fuzzy logic rule-based system employing a tumor marker panel increased sensitivity significantly in colorectal cancers (p<0. 001) to 63% (Tumor M2-PK and CEA), in gastric cancers (p<0.001) to 81% (Tumor M2-PK and CA 72-4) and in esophageal cancers (p<0.02) to 74% (Tumor M2-PK and CA72-4). Adding a third marker further improved the sensitivity only marginally. Fuzzy logic analysis has proven to be more powerful than measurement of single markers alone or combinations using multiple logistic regression analysis of the markers. Therefore, with the fuzzy logic method and a tumor marker panel (including Tumor M2-PK), a new diagnostic tool for the detection of gastro-intestinal cancers is available.