BACE is degraded via the lysosomal pathway

J Biol Chem. 2005 Sep 16;280(37):32499-504. doi: 10.1074/jbc.M506199200. Epub 2005 Jul 20.

Abstract

Amyloid plaques are formed by aggregates of amyloid-beta-peptide, a 37-43-amino acid fragment (primarily Abeta(40) and Abeta(42)) generated by proteolytic processing of the amyloid precursor protein (APP) by beta- and gamma-secretases. A type I transmembrane aspartyl protease, BACE (beta-site APP cleaving enzyme), has been identified to be the beta-secretase. BACE is targeted through the secretory pathway to the plasma membrane where it can be internalized to endosomes. The carboxyl terminus of BACE contains a di-leucine-based signal for sorting of transmembrane proteins to endosomes and lysosomes. In this study, we set out to determine whether BACE is degraded by the lysosomal pathway and whether the di-leucine motif is necessary for targeting BACE to the lysosomes. Here we show that lysosomal inhibitors, chloroquine and NH(4)Cl, lead to accumulation of endogenous and ectopically expressed BACE in a variety of cell types, including primary neurons. Furthermore, the inhibition of lysosomal hydrolases results in the redistribution and accumulation of BACE in the late endosomal/lysosomal compartments (lysosome-associated membrane protein 2 (LAMP2)-positive). In contrast, the BACE-LL/AA mutant, in which Leu(499) and Leu(500) in the COOH-terminal sequence (DDISLLK) were replaced by alanines, only partially co-localized with LAMP2-positive compartments following inhibition of lysosomal hydrolases. Collectively, our data indicate that BACE is transported to the late endosomal/lysosomal compartments where it is degraded via the lysosomal pathway and that the di-leucine motif plays a role in sorting BACE to lysosomes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Sequence
  • Amyloid Precursor Protein Secretases
  • Animals
  • Antigens, CD / chemistry
  • Aspartic Acid Endopeptidases / metabolism
  • Aspartic Acid Endopeptidases / physiology*
  • Blotting, Western
  • CHO Cells
  • Cell Line, Tumor
  • Chloroquine / chemistry
  • Cricetinae
  • DNA, Complementary / metabolism
  • Endopeptidases
  • Endosomes / metabolism
  • Humans
  • Immunohistochemistry
  • Leucine / chemistry
  • Lysosomal Membrane Proteins
  • Lysosomal-Associated Membrane Protein 2
  • Lysosomes / metabolism*
  • Molecular Sequence Data
  • Mutation
  • Neurons / metabolism
  • Proteasome Endopeptidase Complex / chemistry
  • Protein Structure, Tertiary
  • Transfection

Substances

  • Antigens, CD
  • DNA, Complementary
  • LAMP2 protein, human
  • Lysosomal-Associated Membrane Protein 2
  • Lysosomal Membrane Proteins
  • Chloroquine
  • Amyloid Precursor Protein Secretases
  • Endopeptidases
  • Aspartic Acid Endopeptidases
  • BACE1 protein, human
  • Proteasome Endopeptidase Complex
  • Leucine