Kidneys extract BNP and NT-proBNP in healthy young men

J Appl Physiol (1985). 2005 Nov;99(5):1676-80. doi: 10.1152/japplphysiol.00641.2005. Epub 2005 Jul 21.

Abstract

Renal metabolism of the cardiac marker NH2-terminal-pro-brain natriuretic peptide (NT-proBNP) has been suggested. Therefore, we determined the renal extraction ratios of NT-proBNP and its bioactive coproduct brain natriuretic peptide (BNP) at rest and during exercise. In addition, the cerebral ratios were evaluated. Ten young healthy men were investigated at baseline, during moderate cycle exercise (heart rate: 140, Borg scale: 14-15), and in the recovery with BNP and NT-proBNP measured from the brachial artery and the jugular and renal veins, and the renal and cerebral extraction ratios (Ext-Ren and Ext-Cer, respectively) were calculated. Cardiac output, stroke volume, heart rate, mean arterial pressures, and estimated glomerular filtration were determined. BNP and NT-proBNP were extracted by the kidneys but not by the brain. We observed no effect of exercise. The mean values (+/- SE) of Ext-Ren of NT-proBNP were similar (0.19 +/- 0.05, 0.21 +/- 0.06, and 0.12 +/- 0.03, respectively) during the three sessions (P > 0.05). Also the Ext-Ren of BNP were similar (0.18 +/- 0.07, 0.15 +/- 0.11, and 0.14 +/- 0.06, respectively; P > 0.05). There were no significant differences between Ext-Ren of BNP and NT-proBNP during the three sessions (P > 0.05). The Ext-Cer of both peptides varied insignificantly between -0.21 +/- 0.15 and 0.11 +/- 0.08. The renal extraction ratio of both BNP and NT-proBNP is approximately 0.15-0.20. There is no cerebral extraction, and short-term moderate exercise does not affect these values. Our findings suggest that the kidneys extract BNP and NT-proBNP to a similar extent in healthy young men.

MeSH terms

  • Adult
  • Blood Pressure
  • Brain / metabolism
  • Exercise / physiology*
  • Glomerular Filtration Rate
  • Heart Rate
  • Humans
  • Kidney / metabolism*
  • Male
  • Natriuretic Peptide, Brain / blood
  • Natriuretic Peptide, Brain / metabolism*
  • Peptide Fragments / blood
  • Peptide Fragments / metabolism*
  • Protein Precursors / blood
  • Protein Precursors / metabolism
  • Stroke Volume

Substances

  • Peptide Fragments
  • Protein Precursors
  • pro-brain natriuretic peptide (1-76)
  • Natriuretic Peptide, Brain