Background: Stem cell transplantation is one of the next great frontiers for surgery. Stem cells, which are undifferentiated and self-renewing, have shown the ability to differentiate into cardiomyocytes, as well as many other cell types for potential therapeutic use by surgeons.
Materials and methods: As a result, stem cells have the potential to undo irreversible cellular damage, something traditional therapies could not cure. However, numerous issues must be resolved to permit safe and effective clinical application of stem cell therapy. These include the interpretation of cellular labeling, the origin of replicating myocytes, the homing mechanism of stem cells, and the differentiation process.
Results: Successful translational research will depend on precise delivery of these cells in real time to the area of interest, e.g., the spinal cord, liver, or heart. Surgeons will be better able to excise and replace/regrow, rather than excise alone. As such, a basic understanding of stem cell biology will benefit the surgeon scientist and clinical surgeon.
Conclusions: The review: 1) discusses myocardial regeneration; 2) defines and categorizes stem cells; 3) presents evidence of stem cell transdifferentiation into cardiomyocytes; and, 4) delineates the therapeutic potential of stem cells in the treatment of ischemic heart disease.