Chronically irradiated murine skin and UV light-induced squamous cell carcinomas overexpress the inducible isoform of cyclooxygenase (COX-2), and COX-2 inhibition reduces photocarcinogenesis in mice. We have reported previously that DNA oligonucleotides substantially homologous to the telomere 3'-overhang (T-oligos) induce DNA repair capacity and multiple other cancer prevention responses, in part through up-regulation and activation of p53. To determine whether T-oligos affect COX-2 expression, human newborn keratinocytes and fibroblasts were pretreated with T-oligos or diluent alone for 24 h, UV-irradiated, and processed for Western blotting. In both cell types, T-oligos transcriptionally down-regulated base-line and UV light-induced COX-2 expression, coincident with p53 activation. In fibroblasts with wild type versus dominant negative p53 (p53(WT) versus p53(DN)), T-oligos decreased constitutive expression of a COX-2 reporter plasmid by >50%. We then examined NFkappaB, a known positive regulator of COX-2 transcription. In p53(WT) but not in p53(DN) fibroblasts and in human keratinocytes, T-oligos decreased readout of an NFkappaB promoter-driven reporter plasmid and decreased NFkappaB binding to DNA. After T-oligo treatment and subsequent UV irradiation, binding of the transcriptional co-activator protein p300 to NFkappaB was decreased, whereas binding of p300 to p53 was increased. Human skin explants provided with T-oligos had markedly decreased COX-2 immunostaining both at base-line and post-UV light, coincident with increased p53 immunostaining. We conclude that T-oligos transcriptionally down-regulate COX-2 expression in human skin via activation and up-regulation of p53, at least in part by inhibiting NFkappaB transcriptional activation. Decreased COX-2 expression may contribute to the observed ability of T-oligos to reduce photocarcinogenesis.