The 26S proteasome system is involved in eliminating various proteins, including ubiquitinated misfolded/unfolded proteins, and its inhibition results in cellular accumulation of protein aggregates. Intramuscle-fiber ubiquitinated multiprotein-aggregates are characteristic of sporadic inclusion-body myositis (s-IBM) muscle fibers. Two major types of aggregates exist, containing either amyloid-beta (Abeta) or phosphorylated tau (p-tau). We have now asked whether abnormalities of the 26S proteasome contribute to s-IBM pathogenesis and whether the multiprotein aggregates have features of aggresomes. Using cultured human muscle fibers we also studied the effect of amyloid-beta precursor protein (AbetaPP) overexpression on proteasome function and the influence of proteasome inhibition on aggresome formation. We report that in s-IBM muscle biopsies 26S proteasome subunits were immunodetected in the gamma-tubulin-associated aggresomes, which also contained Abeta, p-tau, ubiquitin, and HSP70. In addition, a) expression of proteasome subunits was greatly increased, b) the 20Salpha proteasome subunit co-immunoprecipitated with AbetaPP/Abeta, and c) the three major proteasomal proteolytic activities were reduced. In cultured muscle fibers, AbetaPP-overexpressing fibers displayed diminished proteasomal proteolytic activities, and addition of proteasome inhibitor strikingly increased aggresome formation. Accordingly, proteasome dysfunction in s-IBM muscle fibers may play a role in accumulation of misfolded, potentially cytotoxic proteins and may be induced by increased intracellular AbetaPP/Abeta.