The five highly related envelope subgroups of the avian sarcoma and leukosis viruses (ASLVs), subgroup A [ASLV(A)] to ASLV(E), are thought to have evolved from an ancestral envelope glycoprotein yet utilize different cellular proteins as receptors. Alleles encoding the subgroup A ASLV receptors (Tva), members of the low-density lipoprotein receptor family, and the subgroup B, D, and E ASLV receptors (Tvb), members of the tumor necrosis factor receptor family, have been identified and cloned. However, alleles encoding the subgroup C ASLV receptors (Tvc) have not been cloned. Previously, we established a genetic linkage between tvc and several other nearby genetic markers on chicken chromosome 28, including tva. In this study, we used this information to clone the tvc gene and identify the Tvc receptor. A bacterial artificial chromosome containing a portion of chicken chromosome 28 that conferred susceptibility to ASLV(C) infection was identified. The tvc gene was identified on this genomic DNA fragment and encodes a 488-amino-acid protein most closely related to mammalian butyrophilins, members of the immunoglobulin protein family. We subsequently cloned cDNAs encoding Tvc that confer susceptibility to infection by subgroup C viruses in chicken cells resistant to ASLV(C) infection and in mammalian cells that do not normally express functional ASLV receptors. In addition, normally susceptible chicken DT40 cells were resistant to ASLV(C) infection after both tvc alleles were disrupted by homologous recombination. Tvc binds the ASLV(C) envelope glycoproteins with low-nanomolar affinity, an affinity similar to that of binding of Tva and Tvb with their respective envelope glycoproteins. We have also identified a mutation in the tvc gene in line L15 chickens that explains why this line is resistant to ASLV(C) infection.