A convenient route for the synthesis of high-quality overcoated II-VI quantum dots (QDs) is reported in this paper. Simple salts, such as Cd(Ac)2 and Zn(Ac)2 were used to replace organometallics, whose disadvantage is obvious. Size-tunable core/shell structured QDs (CdSe/ZnS, CdSe/CdS, etc.) were synthesized. They were of narrow size distribution and had good monodispersivity and photoluminescence (PL) properties. The spectrum was symmetrical and sharp-pointed (with the full width at half-maximum (fwhm) of about 20-30 nm). The quantum yield (QY) was improved to 60-80% from 20-30% for bare QDs and remained stable at least for 6 months. The primary overcoated QDs were modified with biomacromolecules by a direct mechanical rubbing strategy, which is very simple and fast. The results obtained by UV-vis, PL, atomic force microscopy (AFM), and fluorescence microscopy imaging showed that the modified QDs were of good fluorescent and monodisperse characteristics. They are likely to be used further for biological labels.