The adsorption of NO(2) molecules on defective multiwalled carbon nanotubes has been studied by soft-x-ray photoemission. The valence band and carbon core-level spectra have been acquired before, during, and after NO(2) exposure. The spectra show a reversible decrease of the density of states at the top of the valence band when NO(2) molecules are adsorbed on the (carbon nanotubes) CNTs. No shift of the C 1s spectra has been observed. Theoretical calculations, using density-functional theory, have been performed on the CNT + NO(2) system, considering semiconducting nanotubes with different diameters and introducing a Stone-Wales [Chem. Phys. Lett. 128, 501 (1986)] defect. The calculation confirms the decrease of the density of states at the top of the valence band in the CNT + NO(2) system, while close to the adsorption site new states appear very close to the Fermi level.