The role of molecular dipole moment, charge transfer, and Pauli repulsion in determining the work-function change (Deltaphi) at organic-metal interfaces has been elucidated by a combined experimental and theoretical study of (CH(3)S)(2)/Au(111) and CH(3)S/Au(111). Comparison between experiment and theory allows us to determine the origin of the interface dipole layer for both phases. For CH(3)S/Au(111), Deltaphi can be ascribed almost entirely to the dipole moment of the CH(3)S layer. For (CH(3)S)(2)/Au(111), a Pauli repulsion mechanism occurs. The implications of these results on the interpretation of Deltaphi in the presence of strongly and weakly adsorbed molecules is discussed.