Validation of in vivo pharmacodynamic activity of a novel PDGF receptor tyrosine kinase inhibitor using immunohistochemistry and quantitative image analysis

Mol Cancer Ther. 2005 Aug;4(8):1198-204. doi: 10.1158/1535-7163.MCT-05-0004.

Abstract

With the advent of agents directed against specific molecular targets in drug discovery, it has become imperative to show a compound's cellular impact on the intended biomolecule in vivo. The objective of the present study was to determine if we could develop an assay to validate the in vivo effects of a compound. Hence, we investigated the in vivo pharmacodynamic activity of JNJ-10198409, a relatively selective inhibitor of platelet-derived growth factor receptor tyrosine kinase (PDGF-RTK), in tumor tissues after administering the compound orally in a nude mouse xenograft model of human LoVo colon cancer. We developed a novel assay to quantify the in vivo anti-PDGF-RTK activity of the inhibitor in tumor tissue by determining the phosphorylation status of phospholipase Cgamma1 (PLCgamma1), a key downstream cellular molecule in the PDGF-RTK signaling cascade. We used two antibodies, one specific for the total (phosphorylated and unphosphorylated forms) PLCgamma1 (pan-PLCgamma1) and the other, specific for phosphorylated form of PLCgamma1 (ph-PLCgamma1) to immunohistochemically detect their expression in tumor tissues. Computer-assisted image analysis was then used to directly compare the ratio of ph-PLCgamma1 to pan-PLCgamma1 immunolabeling intensities in serial sections (5 mum) of tumors obtained from vehicle- and JNJ-10198409-treated tumor-bearing mice. Our data showed statistically significant, dose-dependent differences in the ph-PLC/pan-PLC ratio among the four treatment groups (vehicle, 25, 50, and 100 mg/kg b.i.d.). These results confirmed this compound's ability to suppress PDGF-RTK downstream signaling in tumor tissues in vivo. In addition to this specific application of this in vivo validation approach to those targets that use PLCgamma as a downstream signaling partner, these methods may also benefit other drug discovery targets.

Publication types

  • Validation Study

MeSH terms

  • Animals
  • Antibodies, Phospho-Specific / immunology
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Colonic Neoplasms / enzymology
  • Drug Screening Assays, Antitumor*
  • Humans
  • Image Processing, Computer-Assisted
  • Immunohistochemistry
  • Indans / chemistry
  • Indans / pharmacology*
  • Mice
  • Phospholipase C gamma
  • Phosphorylation
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Pyrazoles / chemistry
  • Pyrazoles / pharmacology*
  • Receptors, Platelet-Derived Growth Factor / antagonists & inhibitors*
  • Type C Phospholipases / analysis
  • Type C Phospholipases / immunology
  • Xenograft Model Antitumor Assays

Substances

  • (6,7-dimethoxy-2,4-dihydroindeno(1,2-c)pyrazol-3-yl)(3-fluorophenyl)amine
  • Antibodies, Phospho-Specific
  • Antineoplastic Agents
  • Indans
  • Protein Kinase Inhibitors
  • Pyrazoles
  • Receptors, Platelet-Derived Growth Factor
  • Type C Phospholipases
  • Phospholipase C gamma