A central obstacle to the design of a global HIV-1 vaccine is virus diversity. Pathogen diversity is not unique to HIV-1, and has been successfully conquered in other fields by the creation of vaccine cocktails. Here we describe the testing of an HIV-1 envelope cocktail vaccine. Six macaques received the vaccine, delivered by successive immunizations with recombinant DNA, recombinant vaccinia virus and recombinant envelope proteins. Following vaccination, animals developed a diversity of anti-envelope antibody binding and neutralizing activities toward proteins and viruses that were not represented by sequence in the vaccine. T-cells were also elicited, as measured by gamma-interferon production assays with envelope-derived peptide pools. Vaccinated and control animals were then challenged with the heterologous pathogenic SHIV, 89.6P. Vaccinated monkeys experienced significantly lower virus titers and better maintenance of CD4+ T-cells than unvaccinated controls. The B- and T-cell immune responses were far superior post-challenge in the vaccinated group. Four of six vaccinated animals and only one of six control animals survived a 44-week observation period post-challenge. The present report is the first to describe pathogenic SHIV disease control mediated by a heterologous HIV-1 vaccine, devoid of 89.6 or SIV derivatives.