The gene that encodes vitellogenin (Vg), the precursor of the major yolk protein, vitellin, is expressed during vitellogenesis in decapod crustaceans. In this study, we sequenced the full-length cDNA from the Pacific white shrimp Litopenaeus vannamei Vg gene (LvVg). This is the first open thelycum penaeid shrimp Vg cDNA to be sequenced. The transcript encodes a 2587 amino acid polypeptide with up to 85% identity to Vg of different penaeid species. Peptide mass fingerprints (PMFs) of the vitelline polypeptides suggest that the predicted endoprotease cleavage site at amino acids 725-728 does indeed undergo cleavage. Five prominent high-density lipoprotein polypeptides of masses 179, 113, 78, 61, and 42kDa were isolated from vitellogenic ovary, and their PMFs were determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) spectrometry. It is likely that these polypeptides are all products of the LvVg gene. Removal of the X-organ sinus gland complex (XO-SG), which secretes the neurohormones that control the endocrine system regulating molt and reproduction, can induce both these processes. During the course of a number of molt cycles in induced sub-adult females, periodic ovarian growth and resorption were observed. Ovary growth correlated with LvVg expression in both the hepatopancreas and the ovary. Expression in ovaries of induced intermolt-early premolt females was significantly higher compared to all other sub-groups. Expression in ovaries of induced females was significantly higher compared to hepatopancreas at all molt cycle stages. Periodicity of molt and vitellogenesis in endocrinologically induced sub-adult shrimps may serve as a model to study alternate regulation of gene expression during these two processes.