Rapid structure determination of a metal oxide from pseudo-kinematical electron diffraction data

Ultramicroscopy. 2006 Jan;106(2):114-22. doi: 10.1016/j.ultramic.2005.06.058. Epub 2005 Jul 28.

Abstract

The electron precession diffraction technique is employed to provide quasi-kinematical data for determination of atom positions in the (Ga,In)2SnO5m-phase. Precession data are compared with conventional diffraction data captured under identical conditions and show a distinct superiority because they exhibit kinematical characteristics in the structure-defining reflections. Precessed data are not usable within a kinematical interpretation in all cases, and a simple basis is presented for omission of errant reflections to improve adherence to kinematical behavior. A second approach is demonstrated where intensities are used with direct methods instead of amplitudes, enhancing the contrast between strong and weak beams. The unrefined atom positions recovered a priori via direct methods are consistent between the two approaches and fall on average within 4 picometers of positions in the previously refined structure.