Porous alginate/polyvinyl alcohol (PVA) hybrid scaffolds as bioartificial cell scaffolds were fabricated to improve cell compatibility as well as flexibility of the scaffolds. The alginate/PVA hybrid scaffolds with different PVA compositions up to 50 wt% were fabricated by a modified freeze-drying method including the physical cross-linking of PVA and the following chemical cross-linking of alginate. The prepared alginate/PVA hybrid scaffolds were characterized by morphology observations using scanning electron microscopy (SEM), the measurements of porosity and average pore sizes and the measurements of compressive strength and modulus. The scaffolds exhibited highly porous, open-cellular pore structures with almost the same surface and cross-sectional porosities (total porosities about 85%, regardless of PVA composition) and the pore sizes from about 290 microm to about 190 microm with increasing PVA composition. The alginate/PVA hybrid scaffolds were more soft and elastic than the control alginate scaffold without significant changes of mechanical strength. The scaffolds were examined for their in vitro cell compatibility by the culture of chondrocytes (human chondrocyte cell line) in the scaffolds and the following analyses by MTT assay and SEM observation. It was observed that the alginate/PVA scaffolds had better cell adhesion and faster growth than the control alginate scaffold. It seems that 30 wt% addition of PVA to alginate in the fabrication of the hybrid scaffolds is desirable for improving their flexibility and cell compatibility.