Enhanced plasma levels of matrix metalloproteinase 9 (MMP-9) detected in patients with severe sepsis are thought to contribute to the development of organ dysfunction in endotoxemia. We have recently reported that peptidoglycan, the major wall component of gram-positive bacteria, increases MMP-9 levels in lung and liver and organ injury in the rat. Thus far, it is unclear whether MMP-9 is part of the septic response to peptidoglycan in human blood. The aim of the present study was to examine the regulation of MMP-9 by peptidoglycan in human leukocytes. The addition of peptidoglycan to whole human blood caused enhanced levels of MMP-9 after 1 h of incubation (306 vs. 75 ng/mL, P < or = 0.05) and onward, as measured by enzyme-linked immunoabsorbant assay. In neutrophil cultures, MMP-9 values increased significantly after 30 min of incubation with peptidoglycan (242 vs. 121 ng/mL, P < or = 0.05), whereas muramyl dipeptide had no effect. In contrast, adherent monocytes released insignificant amounts of MMP-9. To examine whether the released MMP-9 resulted from de novo synthesis, intracellular and secreted MMP-9 was measured during stimulation of neutrophils. The total MMP-9 values (the sum of intracellular and secreted MMP-9) before and after stimulation were mainly unaltered. The enhanced MMP-9 levels induced by peptidoglycan was attenuated by inhibitors of p38 mitogen-activated protein kinases (MAPK), (SB202190, 25 microM) and ERK1/2 (PD98059, 25 microM) and inhibitors of Src Tyrosine kinase (PP2, 5 microM) and PI3-K (LY294002, 25 microM).