Innexins are a family of transmembrane proteins involved in the formation of gap junctions, specific intercellular channels, in invertebrates. Analyses of the entire innexin family during Drosophila melanogaster embryonic development shows the occurrence of complex and specific patterns of expression of the different genes. Innexins inx-2 and inx-7, in general, do not appear to exhibit extensive co-expression in different D. melanogaster cellular compartments. We propose here a new and robust mechanism, based on our analysis of the genomic organization of inx-2 and inx-7, that structurally justifies the reciprocal expression of genes.