Background/aims: We conducted an analysis of chromosomal numerical aberrations and their clinical significance in hepatocellular carcinoma.
Methods: We analyzed 87 hepatocellular carcinomas by array-based comparative genomic hybridization with an array containing 800 bacterial artificial chromosome clones.
Results: Frequent (>30%) chromosomal losses on 1p36.1, 4q21-25, 4q34-35.1, 8p23.3b-11.1, 13q14.1-14.3, 16p13.3, 16q22.1-24.3b, 17p13.3-13.1 and 17p13.3-11, and gains on 1q21-44f, 2q21.2, 2q34, 3q11.2, 5p14.2, 5q13.2-14, 7p22, 7p14.2, 7q21.1, 7q22.3, 7q34, 8q12-24.3 and 17q23, were observed. Recurrent (>5%) amplifications were detected on 1q25, 8q11 and 11q11, and we discovered a novel homozygous deletion at 14q32.11. The extent of chromosomal aberrations correlated significantly with various clinicopathological characteristics of the tumors, and increased in a stepwise manner with the progression of hepatocellular carcinoma. We also identified novel chromosomal alterations that were significantly associated with a range of malignant phenotypes. Multivariate analysis revealed that both chromosomal loss on 17p13.3 and gain on 8q11 are independent prognostic indicators.
Conclusions: Our results contribute to a complete description of genomic structural aberrations in relation to hepatocarcinogenesis and provide a valuable basis from which we can begin to understand the characteristics of tumors, predict patient outcomes and discover novel therapeutic targets for hepatocellular carcinoma.