The Burkholderia cepacia complex consists of nine phenotypically similar but genotypically distinct beta-proteobacteria that are metabolically diverse and highly antibiotic resistant. Because of this exceptional intrinsic antibiotic resistance, infections with B. cepacia complex members are difficult to treat clinically and new alternative therapies are required. One strategy that holds some promise is the use of naturally occurring antibacterial bacteriophages that could potentially bind to and lyse B. cepacia complex cells in vivo. Towards that end, we used enrichment techniques to isolate lytic and lysogenic bacteriophages specific to the B. cepacia complex. The newly isolated bacteriophages were characterized by host range analysis, electron microscopy, genome restriction analysis, and partial DNA sequencing. These isolates include a bacteriophage with one of the broadest host ranges yet identified for any bacteriophage specific to the B. cepacia complex, and the first description of bacteriophages capable of lysing B. ambifaria.