Histone modifications mediate changes in gene expression by altering the underlying chromatin structure or by serving as a binding platform to recruit other proteins. One such modification, histone methylation, was thought to be irreversible until last year when Shi and co-workers broke new ground with their discovery of a lysine-specific histone demethylase (LSD 1). They showed that LSD 1, a nuclear amine oxidase homolog, is a bona fide histone H3 lysine 4 demethylase (Shi et al., 2004). Now, a new study from published in a recent issue of Molecular Cell, together with two studies recently published by and in Nature, reveal that LSD 1's specificity and activity is in fact regulated by associated protein cofactors.