Rat nylon wool nonadherent bone marrow cells were propagated for up to 75 days in co-culture with stromal cells derived from either spleen or bone marrow. Interleukin (IL) 1 enhanced the ability of spleen stroma to support the long-term culture of natural killer (NK) cells, ostensibly by inducing these support cells to synthesize other cytokines. Flow cytometry studies indicated that the nylon wool separation procedure enriched the concentrations of mature NK cells from 7.9% to 38.1% for splenocytes and from 3.8% to 19.5% for bone marrow cells. Analyses of the adherent zones of suspended nylon screen NK cell cultures revealed substantial numbers of large granular lymphocytes that expressed NK 323+/MOM/3F12/F2- phenotypes. The presence of both mature and immature cells of the NK lineage in this matrix was inferred by the presence of both IL-2 receptor (IL-2R) positive and IL-2R negative, and OX-8+ and OX-8- NK 323+ cells over the greater than 4-month experimental period. Suspended nylon screen cultures displayed a greater potential for producing cytolytic cells than either co-cultures of bone marrow nonadherent cells on stroma monolayers or suspension cultures. The large granular lymphocytes produced in suspended nylon screen cultures could be transformed into active killers of YAC-1 targets by IL-2. In contrast to bone marrow nonadherent cells, more splenic nylon-wool-passed cells displayed a mature NK phenotype, but their proliferative potential and ability to be transformed into cytolytic cells by IL-2 decreased rapidly in culture. In the suspended nylon screen culture system, NK cells migrate from the underlying stroma in stages as they mature, retain their cytolytic potential, and manifest a capacity for self-renewal. Cultured cells were routinely dissociated into single cell suspensions via enzyme treatment and were reinoculated onto "fresh" nylon screen/stromal cell templates after passage through nylon wool columns. These co-cultures continued to generate cytolytic cells in numbers greater than those of the initial inoculum.