New curative and palliative treatments are needed to respond to the poor prognosis of esophageal cancer. The purpose of this study was to determine whether magnetic resonance imaging (MRI) and MR thermometry can be used to monitor the thermal ablation induced by an intraluminal high-intensity ultrasound applicator positioned in the esophagus. Experiments were performed in vivo in 2 pig esophagi (25 thermal lesions per pig). Respiratory gated or cardiac gated MR thermometry was performed with segmented echo-planar imaging gradient echo sequences. All MR acquisitions were performed without susceptibility artifacts or radiofrequency interference with the ultrasound device. The experimental procedure proposed for accurate measurement of temperature in the esophagus was found to achieve an SD of +/- 1.5 degrees C for respiratory gating and +/- 3.1 degrees C for cardiac gating. Gd-enhanced T(1)-weighted images were used to depict coagulation necrosis. Autopsy was performed immediately after the treatment. Ultrasound effects were inspected visually, and the dimensions of the lesions in the liver neighboring the esophagus were compared with those determined on the MRI images. The visually assessed thermal lesions showed good correlation with the MRI data (10% mean volume difference). The feasibility of esophageal thermal ablation using intraluminal high-intensity ultrasound and of on-line MR temperature monitoring was demonstrated.
Copyright 2005 Wiley-Liss, Inc.