Trastuzumab therapy for tamoxifen-stimulated endometrial cancer

Cancer Res. 2005 Sep 15;65(18):8504-13. doi: 10.1158/0008-5472.CAN-04-4107.

Abstract

A novel in vivo model of tamoxifen-stimulated endometrial cancer was developed and the role of HER-2/neu investigated by using trastuzumab. Tamoxifen-stimulated tumors (ECC-1TAM) were growth stimulated by 17beta-estradiol (E2), tamoxifen, or raloxifene. Trastuzumab inhibited growth of E2-stimulated ECC-1E2 tumors by 50% and tamoxifen-stimulated ECC-1TAM tumors by 100%. ECC-1 tumors expressed functional estrogen receptor alpha (ER alpha) as measured by induction of pS2 and c-myc mRNAs. E2 induced pS2 and c-myc mRNAs up to 40-fold in ECC-1E2 and ECC-1TAM. Tamoxifen induced pS2 and c-myc mRNAs up to 5-fold in ECC-1E2 tumors and up to 10-fold in ECC-TAM tumors. Trastuzumab blocked E2-induced pS2 mRNA (P < 0.01) in ECC-1E2 by 50% and tamoxifen-induced c-myc mRNA (P < 0.1) in ECC-1TAM tumors by 70%. Trastuzumab decreased phosphorylated and total HER-2/neu protein in ECC-1E2 and ECC-1TAM tumors. However, only phospho-ERK-1/2 and not phospho-Akt protein was decreased by trastuzumab in tamoxifen-treated ECC-1TAM tumors. The insulin-like growth factor (IGF-I) signaling pathway also activates extracellular signal-related kinase (ERK)-1/2 and could block the efficacy of trastuzumab in ECC-1E2 tumors. The results showed that IGF-I, IGF-IR mRNAs, and phospho-insulin receptor substrate-1 (IRS-1) protein were decreased in ECC-1TAM compared with ECC-1E2 tumors. The results show that trastuzumab is an effective therapy for both E2-stimulated and tamoxifen-stimulated endometrial cancer. The data suggest estrogenic activities of E2 and tamoxifen at ER alpha-regulated pS2 and c-myc genes are in part mediated by HER-2/neu. However, trastuzumab is a better growth inhibitor of ECC-1TAM tumors where there is diminished IGF-I signaling allowing for complete blockade of the downstream phospho-ERK-1/2 signal.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antibodies, Monoclonal / pharmacology*
  • Antibodies, Monoclonal, Humanized
  • Antineoplastic Agents / pharmacology*
  • Cell Growth Processes / drug effects
  • Cell Line, Tumor
  • Endometrial Neoplasms / drug therapy*
  • Endometrial Neoplasms / metabolism
  • Endometrial Neoplasms / pathology
  • Estradiol / pharmacology
  • Estrogen Receptor alpha / biosynthesis
  • Female
  • Humans
  • Membrane Proteins / biosynthesis
  • Membrane Proteins / genetics
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Presenilin-2
  • Proto-Oncogene Proteins c-myc / biosynthesis
  • Proto-Oncogene Proteins c-myc / genetics
  • RNA, Messenger / biosynthesis
  • RNA, Messenger / genetics
  • Receptor, ErbB-2 / genetics
  • Receptor, ErbB-2 / immunology
  • Receptor, ErbB-2 / physiology
  • Stimulation, Chemical
  • Tamoxifen / pharmacology*
  • Trastuzumab
  • Xenograft Model Antitumor Assays

Substances

  • Antibodies, Monoclonal
  • Antibodies, Monoclonal, Humanized
  • Antineoplastic Agents
  • Estrogen Receptor alpha
  • MYC protein, human
  • Membrane Proteins
  • PSEN2 protein, human
  • Presenilin-2
  • Proto-Oncogene Proteins c-myc
  • RNA, Messenger
  • Tamoxifen
  • Estradiol
  • Receptor, ErbB-2
  • Trastuzumab