Antimicrobials are among the most important and commonly prescribed drugs in the management of critically ill patients. Selecting the appropriate antimicrobial at the commencement of therapy, both in terms of spectrum of activity and dose and frequency of administration according to concentration or time dependency, is mandatory in this setting. Despite appropriate standard dosage regimens, failure of the antimicrobial treatment may occur because of the inability of the antimicrobial to achieve adequate concentrations at the infection site through alterations in its pharmacokinetics due to underlying pathophysiological conditions. According to the intrinsic chemicophysical properties of antimicrobials, hydrophilic antimicrobials (beta-lactams, aminoglycosides, glycopeptides) have to be considered at much higher risk of inter- and intraindividual pharmacokinetic variations than lipophilic antimicrobials (macrolides, fluoroquinolones, tetracyclines, chloramphenicol, rifampicin [rifampin]) in critically ill patients, with significant frequent fluctuations of plasma concentrations that may require significant dosage adjustments. For example, underexposure may occur because of increased volume of distribution (as a result of oedema in sepsis and trauma, pleural effusion, ascites, mediastinitis, fluid therapy or indwelling post-surgical drainage) and/or enhanced renal clearance (as a result of burns, drug abuse, hyperdynamic conditions during sepsis, acute leukaemia or use of haemodynamically active drugs). On the other hand, overexposure may occur because of a drop in renal clearance caused by renal impairment. Care with all these factors whenever choosing an antimicrobial may substantially improve the outcome of antimicrobial therapy in critically ill patients. However, since these situations may often coexist in the same patient and pharmacokinetic variability may be unpredictable, the antimicrobial policy may further benefit from real-time application of therapeutic drug monitoring, since this practice, by tailoring exposure to the individual patient, may consequently be helpful both in improving the outcome of antimicrobial therapy and in containing the spread of resistance in the hospital setting.