The neuronal guidance molecule, Netrin-1, has been suggested to play a role in the adhesion and migration of the mammary gland epithelium. Human and mouse Cripto-1 induce proliferation, migration, invasion and colony formation by epithelial cells in 3D matrices. Here we investigate whether Netrin-1 affects these Cripto-1-dependent activities in mouse mammary epithelial cells. Overexpression of Cripto-1 in EpH4 and HC-11 cells (EpH4/Cripto-1 or HC-11/Cripto-1) was associated with low expression of Netrin-1 and increased expression of its receptor Neogenin compared to that of wild-type cells. No change was observed in the expression of the other Netrin-1 receptor, UNC5H1. Treating EpH4/Cripto-1 or HC-11/Cripto-1 mammary cells with exogenous soluble Netrin-1 resulted in increased expression of E-cadherin and UNC5H1, decreased expression of vimentin and decreased activation of Akt as determined by western blotting. Colony formation by Eph4/Cripto-1 cells in 3D gels was significantly reduced in proximity to a Netrin-1 source, and mammary glands of transgenic mice overexpressing human Cripto-1 showed altered ductal growth in proximity to implanted Netrin-1-releasing pellets. Terminal end buds in the treated transgenic mice mammary glands also showed increased expression of E-cadherin and UNC5H1 and decreased expression of active Akt determined by immunohistochemistry. Together, these results suggest that regulation of Netrin-1 expression is important in regulating Cripto-1-dependent invasion and migration of mammary epithelial cells.