D-IMRT verification with a 2D pixel ionization chamber: dosimetric and clinical results in head and neck cancer

Phys Med Biol. 2005 Oct 7;50(19):4681-94. doi: 10.1088/0031-9155/50/19/017. Epub 2005 Sep 21.

Abstract

Dynamic intensity-modulated radiotherapy (D-IMRT) using the sliding-window technique is currently applied for selected treatments of head and neck cancer at Institute for Cancer Research and Treatment of Candiolo (Turin, Italy). In the present work, a PiXel-segmented ionization Chamber (PXC) has been used for the verification of 19 fields used for four different head and neck cancers. The device consists of a 32x32 matrix of 1024 parallel-plate ionization chambers arranged in a square of 24x24 cm2 area. Each chamber has 0.4 cm diameter and 0.55 cm height; a distance of 0.75 cm separates the centre of adjacent chambers. The sensitive volume of each single ionization chamber is 0.07 cm3. Each of the 1024 independent ionization chambers is read out with a custom microelectronics chip.The output factors in water obtained with the PXC at a depth of 10 cm were compared to other detectors and the maximum difference was 1.9% for field sizes down to 3x3 cm2. Beam profiles for different field dimensions were measured with the PXC and two other types of ionization chambers; the maximum distance to agreement (DTA) in the 20-80% penumbra region of a 3x3 cm2 field was 0.09 cm. The leaf speed of the multileaf collimator was varied between 0.07 and 2 cm s-1 and the detector response was constant to better than 0.6%. The behaviour of the PXC was measured while varying the dose rate between 0.21 and 1.21 Gy min-1; the mean difference was 0.50% and the maximum difference was 0.96%. Using fields obtained with an enhanced dynamic wedge and a staircase-like (step) IMRT field, the PXC has been tested for simple 1D modulated beams; comparison with film gave a maximum DTA of 0.12 cm. The PXC was then used to check four different IMRT plans for head and neck cancer treatment: cervical chordoma, parotid, ethmoid and skull base. In the comparison of the PXC versus film and PXC versus treatment planning system, the number of pixels with gamma parameter<or=1 was 97.7% and 97.6%, respectively.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chordoma / radiotherapy
  • Ethmoid Bone / pathology
  • Head and Neck Neoplasms / radiotherapy*
  • Humans
  • Parotid Neoplasms / radiotherapy
  • Radiotherapy Planning, Computer-Assisted*
  • Skull / pathology
  • X-Ray Film
  • X-Ray Intensifying Screens